Mapping the benefits of nature in cities with the InVEST software
Mapping the benefits of nature in cities with the InVEST software

Natural infrastructure such as parks, forests, street trees, green roofs, and coastal vegetation is central to sustainable urban management. Despite recent progress, it remains challenging for urban decision-makers to incorporate the benefits of natural infrastructure into urban design and planning.

Here, we present an approach to support the greening of cities by quantifying and mapping the diverse benefits of natural infrastructure for now and in the future. The approach relies on open-source tools, within the InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs) software City planning software, that computers biophysical and socio-economic metrics relevant to a variety of decisions in data-rich or data-scarce contexts.

Through three case studies in China, France, and the United States, we show how spatially explicit information about the benefits of nature enhances urban management by improving economic valuation, prioritizing land-use change, and promoting inclusive planning and stakeholder dialogue.

We discuss the limitations of the tools, including modeling uncertainties and a limited suite of output metrics, and propose research directions to mainstream natural infrastructure information in integrated urban management.

Cities are uniquely positioned to foster a transition to a more sustainable world. They concentrate human and financial resources; a majority of the world’s population is urban1, and about 85% of global GDP is produced in cities2. Municipal and sub-national governments control important decisions that directly affect the welfare of their citizens. They are on the front lines of addressing challenges arising from climate change, air and water pollution, flood risk, heat waves, and rapid population growth3.

Investing in nature in cities — “natural infrastructure” here forth — is an important component of making cities more resilient to such challenges. Natural infrastructure is defined as the network of natural and semi-natural elements providing ecological, economic, or social benefits for humans and other species4, ranging from urban forests to community gardens, parks to green roofs, and coastal vegetation to riparian corridors.

Nature-based solutions relying on natural infrastructure can help to reduce the risk of flooding; attenuate water, noise, and air pollution; mitigate the urban heat island effect, and provide attractive green and blue spaces that promote physical and mental health5,6,7,8. Information about how much, where, and to whom investments in natural infrastructure yield benefits can improve urban planning and decision-making and direct limited budgets towards where they can do the most good5,9,10,11.

Here we present a set of modeling tools to help evaluate the impact of investments in natural infrastructure in cities, implemented within InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs)12. InVEST is a software suite that models the links between nature and the well-being of people, i.e., “ecosystem services” or “nature’s contributions to people”13.

It has been widely used to demonstrate the potential of natural infrastructure investments14,15,16, including a recent application with a global scope17. The set of ecosystem services important in urban areas is somewhat different than in rural areas so the new urban tools introduced here address urban cooling to reduce the urban heat island effect, stormwater management, and access to green space in cities.

Like the original InVEST software, the new InVEST urban tools are free, open-source, and modular so that users can choose which services to include in the analysis12. The tools are designed to incorporate spatial information about natural infrastructure’s benefits into resilience research and practice.

Alternative commonly-used tools for urban ecosystem service assessment include i-Tree, ARIES (Artificial Intelligence for Ecosystem Services), Costing Nature, and SolVES (Social Values for Ecosystem Services) (see Supplementary Table 1 and associated references18).

Together, these tools have enabled significant advances in measuring the benefits of natural infrastructure in cities around the world. However, to the best of our knowledge, none of these tools can simultaneously assess a large number of urban ecosystem services, operates in cities around the world, and informs a wide variety of urban decision contexts (e.g., flood zone planning, climate adaptation, biodiversity conservation, and public health).

For example, with its focus on urban trees, i-Tree cannot assess the benefits from green roofs or coastal habitats. Many other tools emerge from research in specific fields and focus on a narrow set of services (e.g., stormwater management). Enabling a comprehensive assessment of services and natural infrastructure is important to further develop the science of urban systems and facilitate a dialogue between researchers and practitioners with different expertise.

The InVEST tools support such assessments by allowing for the consideration of more services provided by a diverse type of natural infrastructure (Table 1). As we detail in this paper, the tools are also flexible and broadly applicable (or ‘reusable’, sensu Hamilton et al.)19, with dedicated software maintenance, which increases the size of their user community–a critical factor in the uptake of decision-support tools.

LEAVE A REPLY

Please enter your comment!
Please enter your name here